A DEUTERIUM TRACER STUDY OF 6,1,2-HYDRIDE SHIFT IN SUBSTITUTED NORBORNYL CATIONS* Vernon F. Raaen, Ben M. Benjamin and Clair J. Collins Chemistry Division, Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830

(Received in USA 10 May 1971; received in UK for publication 15 June 1971)

One of the important but unanswered questions concerning the reaction of nitrous acid with primary aliphatic amines^{1,2} has been³ whether the classical ions originally formed on loss of nitrogen can survive several Wagner-Meerwein rearrangements or hydride shifts. We now have evidence that they can. We previously reported⁴ that a classical, <u>secondary</u> norbornyl cation survives a Wagner-Meerwein rearrangement, since the rearranged cation was attacked from the <u>endo</u>-direction to produce 1.8% of <u>endo</u>-product. Hückel and Kern⁵ have demonstrated that both <u>exo</u>- and <u>endo</u>-fenchylamines produce <u>exo</u>- and <u>endo</u>-isomers of α -fenchene hydrate, thus showing that a <u>tertiary</u> classical cation can survive Wagner-Meerwein rearrangement to yield endo-products.

In the deaminations (in acetic acid—sodium acetate) of 1^6 and 2^7 (Chart I) the yields of 3 and 4 (as the monoacetates)⁸ are in the same ratio (1.6-1.7) from both reactants, and this ratio is roughly the same as the ratio of 3:4 (1.4) observed upon the hydrolyses⁹ of the secondary tosylates of 3 and of 4. Thus B and C might mistakenly be interpreted as a nonclassical ion particularly

^{*}Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.

CHART I

since the two <u>exo</u>-amines corresponding to the two ions B and C yield the acetates of 3 and 4, on deamination, in the ratios of 2.2:1 and 1:1.7 respectively.¹⁰

If both 1 and 2, however, should prefer the same clockwise pathway and approach $B \neq C$ from the "B-side," then deaminations both of 1 and 2 should result in 3:4 > 1, even if B and C are classical. That both reactants approach the equilibrium $B \neq C$ through clockwise pathways (as the intermediates are oriented in the chart) was demonstrated by means of deuterium labeling. The positions in 3 and 4 designated "D" denote where the deuterium goes <u>via</u> the clockwise pathways, whereas "D'" denotes the fate of deuterium when 3 and 4 result from counterclockwise pathways. The results are given in Table I, and show that both reactants yield 3 and 4 by predominant (77-89%) clockwise routes. The yields of 3 and 4 as determined by the isotope dilution method, ¹¹ are also given in Table I. These data thus show that a comparison of the product ratios 3:4 from the two reactants 1 and 2 is not of itself a sufficient criterion for nonclassical character of the ions $B \rightleftharpoons C$.

Another important conclusion can be drawn from Chart I and Table I: If $B \Rightarrow C$ were in fact a single nonclassical ion then 3 and 4 from a given, single reactant should exhibit identical deuterium distributions in D and D'. That these distributions are significantly different means that even after two Wagner-Meerwein rearrangements and a hydride shift, ions B and C are best formulated as unbridged, classical ions, which have not reached equilibrium.

Table I

Yields and Deuterium Distributions in $\underline{3}$ and $\underline{4}$ from Deaminations of $\underline{1}$ and $\underline{2}$

Reactant	Product <u>3</u>		Product <u>4</u>	
	Yield, % ^a	D′ ^b	Yield, % ^a	D' ^b
l	4.25 ± .01	0.11 ± .025	2.7 + .01	0.175 ± .016
~	6.3 ± .02	0.145 ± .025	3.7 ± .02	0.23 ± .016

 $a_{The} \stackrel{+}{-}$ values are the reproducibilities of the carbon-14 assays. $b_{Standard}$ error.

In $\underline{4}$ containing no D, the signals for 2H at C₃ are centered at $\underline{\delta} = 2.07$ ppm (pyridine), and overlap the multiplet for the <u>anti-C₇H</u> (intensity 3.00^{\pm} .02). In $\underline{4}$ from either 1 or 2 the intensity is 2.00^{\pm} .03. There was no loss of deuterium in the other products^{7,8} of deamination of 1 and 2. Conversion of $\underline{4}$ to the 2-<u>exo-5-endo-dio1</u>⁷ allowed isolation of the signal ($\underline{\delta} = 3.25$ ppm) for <u>endo-H</u> at C₃. Diol 3 (no D) exhibits a quartet ($\underline{\delta} = 2.4$ ppm, pyridine) for <u>exo-H</u> at C₃, and is overlapped by H at C₄ (intensity, 2.00^{\pm} .03). Integration of this signal for 3 (with D) gave the fraction of <u>exo-H</u> at C₃. On oxidation of $\underline{3}$ to the ketone, ⁴ the signal for <u>exo-H</u> at C₃ is at $\underline{\delta} = 2.6$ ppm (pyridine) and is also overlapped by H at C₄.

- H. Söll, in Houben Weil "Methoden der organischen Chemie," E. Müller, Ed., Georg Thieme Verlag, Stuttgart XI/2, 133-181 (1958).
- 2. J. H. Ridd, Quarterly Reviews (London), 15, 418 (1961).
- 3. P. D. Bartlett, "Nonclassical Ions," W. A. Benjamin, New York, N. Y., page 65 (1965).
- 4. B. M. Benjamin and C. J. Collins, J. Amer. Chem. Soc. 92, 3183 (1970).
- 5. W. Hückel and H.-J. Kern, Ann 738, 49 (1969).
- C. J. Collins, B. M. Benjamin, V. F. Raaen, I. T. Glover, and M. D. Eckart, Justus Liebig's Annalen der Chemie 739, (1970).
- 7. C. J. Collins, V. F. Raaen, and M. D. Eckart, <u>J. Amer. Chem. Soc.</u> <u>92</u>, 1787 (1970).
- The products of the deaminations of 1 and 2 have all been described before [see ref. 7, and C. J. Collins and B. M. Benjamin, <u>ibid.</u>, <u>89</u>, 1652 (1967)].
- 9. B. M. Benjamin, B. S. Benjaminov, and V. F. Raaen, unpublished work.
- 10. C. J. Collins and B. M. Benjamin, J. <u>Amer. Chem. Soc. 92</u>, 3182 (1970).
- V. F. Raaen, G. A. Ropp, and H. P. Raaen, "Carbon-14," McGraw-Hill, New York, N. Y., 1968, Chapter 2.